# Pre-class Warm-up!!!

Would you choose to use Stokes' theorem to do the following problem?

Let F be the vector field  $F(x,y,z) = (x + y^3z, sin(x) + z, y).$ Compute the flux of F across the upper unit hemisphere S, that is  $\iint_S F \cdot dS$ 

R

a. Yes

b. No

S オ

The issue : 
$$F \neq \nabla \times G$$
 for any  $G$   
because  $\nabla \cdot F = 1 + 0 + 0 = 1 \neq 0$   
Stokes says  
 $\iint_{S} \nabla \times \operatorname{GrdS} = \int_{\partial S} G \cdot dS$ 

## Section 8.4: Gauss's Theorem

We learn:

- Gauss's theorem is similar to Green's theorem and Stokes' theorem, except it works one dimension higher.
- How the surface of a solid region must be oriented for Gauss's theorem
- The use of Gauss's theorem in computing the flux of a vector field across a surface.
- The proof looks very like the proof of Green's theorem
- It is also called the Divergence Theorem.

## Gauss's Theorem.

= OW

Let W be a solid region of  $R^3$  bounded by a closed surface  $S = \partial W$  oriented so that the unit normal points to the outside of the W.

If  $F : R^3 \to R^3$  is a vector field we have

$$\iint_{W} \nabla \cdot F \, dV = \iint_{S = \partial W} F \cdot dS$$

What do closed surface and  $\partial W$  mean? 'Closed' means bounded, with empty boundary  $\partial S = \phi$ W is the 3-D region inside a closed surface.

### Example. (Like most HW questions)

Find the flux of F across S where S is the unit sphere with outward pointing normal, and  $F(x,y,z) = (\chi + e^{\cos y} \sqrt{1+z^2}, y + \frac{x}{1+z^2}, 2z - 3y^3)$ Solution. Let W be the solid unit ball so DW = S. By Gauss. JJF-dS = JJJ V-FdV  $= \iiint_{W} |+|+2 dV = 4 \iiint_{W} dV$ = 4 volume of W = 16TT

 $(x + e^{cos(y)} \sqrt{1 + z^{2}}, y + x/(1 + z^{2}), 2z - 3y^{3})$ 

### Comparison with Stokes' theorem.



If Div F = 0 and S is closed we can deduce that  $\iint_S F \cdot dS = 0$  in two ways.

Example (closing a surface) Let F(x,y,z) =  $(x + e^{\cos(y)} \sqrt{1+z^2}, y + x/(1+z^2),$   $2z-3y^3)$ Find the flux of F across the upper half of the

unit sphere, oriented with an outward pointing normal.







Example. (Solid regions with holes in them) Theorem 10 in the book:

The flux of  $(x,y,z) / r^3$  across the surface of an 'elementary symmetric region' M is  $4\pi$  if (0,0,0) lies in M 0 if (0,0,0) does not lie in M.